
Toward a new approach for 

massive LiDAR data 

processing
V-H. Cao#1, K-X. Chu#2, N-A. Le-Khac#3, M-T. Kechadi#3, D. Laefer*3, L. Truong-Hong*3

#School of Computer Science & Informatics, University College Dublin

Belfield, Dublin 4, Ireland

1van-hung.cao@ucdconnect.ie

2chuxuankhoi@gmail.com

* School Of Civil, Structural & Environment Engineering, University College Dublin

Belfield, Dublin 4, Ireland

3{an.lekhac,tahar.kechadi,debra.laefer,linh.truonghong}@ucd.ie



Agenda

1. Introduction

2. Background

3. Comparative Study

A. Comparity state-of-the-art approaches in HPC for LiDAR processing

B. Software study

4. Toward a new approach for processing very large LiDAR data

A. Loading data

B. Building data structure



Introduction

 Laser scanning (also known as Light Detection And Ranging) has been 

widely applied in various applications

 Recently, an aerial laser scanning (ALS) has a scan rate of 1MHz and 

Full Waveform Digitizer (FWD) collection at up 120 kHz, where ALS 

data consist hundreds of millions of 3D point clouds associated with 

waveform data of laser pulses. 

 The huge volumes and complexity of ALS data are to be great 

challenges for data processing as the limitation of the computing 

hardware.



Introduction (cont)

 In this paper, we firstly present a comparative study of 

software libraries and algorithms to optimise the 

processing of LiDAR data.

 We propose new method to improve this process with 

experiments on large LiDAR data. 

 Finally, we discuss on a parallel solution of our approach 

where we integrate parallel/cloud computing in 

processing LiDAR data.



Background

 Our long term goal is to develop efficient algorithm based on high performance 
computational (HPC) resources for classifying ALS data points into separate 
categories and for extracting the point cloud of separate objects. 

 The irrespective classification process:

 slope-based

 cluster/segmentation-based

 surface based

 morphological filter

 The segmentation process:

 model fitting-based methods

 region growing-based methods 

 clustering feature based methods

 The nearest neighbour search plays out an important role in controlling the 
performance of the algorithm



Comparative study

 In this part, we will take a look at some current approaches in 

HPC for LiDAR data processing

 In particular, the HPC-based paradigms in this part comprise

 Hardware systems 

Multi-core CPU architecture

Graphic processing units (GPUs), and general-purpose 

computing on graphics processing units (GPGPUs). 

 PC Cluster 

 Field programmable gate array (FPGAs)

 Cloud computing environments



Comparative study

Python language

 

Libraries

 



Toward a new approach for processing very 

large LiDAR data
 Loading data

 Vectorising

 Multi-threading

 Application of data structure



Toward a new approach for processing very 

large LiDAR data

Algorithm 1 Optimal kdContruct

1: procedure kdConstruct (trainingSet)
2: if trainingSet.size() <= Leafsize then
3: return kdtree.leafnode // Returns a 
kdTree
4: else
5: (s, val) ← chooseSplit(trainingSet) // s is 
splitting
dimension, chooseSplit function based on 
sliding midpoint rudes
6: trainLeft ← {x ∈ trainingSet : xs < val }
7: trainRight ← {x ∈ trainingSet : xs ≥ val }
8: kdLeft ← kdConstruct(trainLeft)
9: kdRight ← kdConstruct(trainRight)
10: return kdtree(s, val, kdLeft, kdRight)
11: end procedure

Algorithm 2 Brute-force

1: c ← first(P) // generate a first 

candidate solution for P

2: while c < > Λ do

3: if valid(P,c) then output(P, c) // 

check whether candidate c is a 

solution for P then return output c

4: c ← next(P,c) // generate the next 

candidate for P after the current 

one c

5: end while



Toward a new approach for processing very 

large LiDAR data
 Dataset: approximately 18 million points. 

 Testing platform: Intel Core i7-3517U 1.9 GHz Processor, 2 GB DDR3 RAM, 256 

GB Solid State Drive, Windows 8.1. 



Toward a new approach for processing very 

large LiDAR data
Algorithm 3 Par-Optimal kdContruct

1: procedure kdConstruct (trainingSet, TpNode)

2: if trainingSet.size() <= Leafsize then

3: return kdtree.leafnode // Returns a kdTree

4: else

5: (s, val) ← chooseSplit(trainingSet) // s is splitting

dimension, chooseSplit function based on sliding midpoint rudes

6: trainLeft ← {x ∈ trainingSet : xs < val }

7: trainRight ← {x ∈ trainingSet : xs ≥ val }

8: kdLeft ← kdConstruct(trainLeft, TpNode.left)

9: kdRight ← kdConstruct(trainRight, TpNote.right)

10: return kdtree(s, val, kdLeft, kdRight)

11: end procedure



Toward a new approach for processing very 

large LiDAR data



Conclusion and Future work

 In this paper, we conduct comparative studies of existing libraries and 

methods to determine the key issues that affect the performance of LiDAR 

processing.

 We also propose a new strategy for ALS data processing. 

 We describe moreover the ability of improving the performance of our 

approach by integrating parallel computing based on an efficient network 

topology TreeP.

 Experimental results of parallel approach for both kd-tree construction and 

brute-force searching with very large size of LiDAR data are also being 

produced. 

 These results will allow us to test and evaluate the robustness of our 

approach.




